TDX-10 시스템 신뢰도 배분

신성문* 정철오** 황 건**

I. 서론

시스템의 신뢰도는 시스템을 구성하고 있는 구성품(Component)의 신뢰도에 따라 결정되고, 시스템의 신뢰도와 비용은 서로 비례적으로 증가한다. 높은 신뢰도를 갖는 구성품으로 시스템을 구성하면 시스템의 요구하는 신뢰도(신뢰도 목표치)는 만족되나 많은 비용이 요구되고, 반대로 낮은 신뢰도를 갖는 구성품으로 시스템을 구성하면 적은 비용이 요구되나 신뢰도 목표치는 만족시킬 수 없게 된다. 따라서 신뢰도 목표치를 만족시키는 시스템을 적은 비용으로 개발할 때는 시스템의 신뢰도 목표치에 적합하도록 구성품의 적정 신뢰도를 확보하는 작업이 필요하다.

신뢰도 배분은 시스템의 신뢰도 목표치를 시스템의 구성품에 할당하여 시스템의 요구조건을 만족시키는 일련의 과정으로 개발 초기에 이루어진다. 개발자가 구성품의 신뢰도 수준(구성품의 신뢰도 목표치)을 제공하여 시스템에서 사용되는 구성품을 포함한 부품(Parts)의 품질 및 신뢰도 수준을 개발 초기부터 결정하게 하고, 이를 신제품 개발에 반영하여 시스템의 신뢰도 보증이 부품단계에서 시스템 단계까지
단계별로 이루어 지도록 한다.
본고에서는 TDX-10 시스템의 신뢰도 목표치 에서 허용된 가중치 및 기능시간을 상위 테벨 에서 하위 테벨까지 단계별로 배분하여 시스템을 구성하고 있는 서브시스템, 불력, Unit 및 회 로랙의 신뢰도 목표치를 계산하였다. 시스템의 신뢰도 구조에 따라 프로세서 및 device의 신뢰도를 H/W, S/W 및 운용중 예외 3부분으로 나누어 배분하고 프로세서 및 device의 H/W 신뢰도는 회로랙 단위로 가중치를 감안하여

Ⅱ. 본론
1. 신뢰도 배분 방법

신뢰도 배분에 사용되는 기법은 다음과 같다.

<table>
<thead>
<tr>
<th>방법모형</th>
<th>모수(입력 데이터)</th>
<th>장·단점</th>
<th>적용대상</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal Apportionment</td>
<td>Ai=(As)i/(1) (1=1,2,...,n)</td>
<td>n : 구성품의 작업개수</td>
<td>손 쉽게 적용이 가능하나, 배분대상의 성능, 기능, 비용 등 현실적이고 기술적인 문제를 고려하지 않고 있음</td>
</tr>
<tr>
<td>ARINC Technique</td>
<td>Ai=(As)i, Ai*=(Wi) s</td>
<td>Wi=ai/\sum ai \quad i=1</td>
<td></td>
</tr>
<tr>
<td>AGREE Method</td>
<td>\lambda_i=\frac{N_i(1-ln)+Rs(t)}{N \cdot E_i \cdot t}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Technique</td>
<td>Minimize Z=\sum_{j=1}^{m} \left(\frac{\sum_{j=1}^{m} C_j}{i} \right) Y_j</td>
<td>\sum_{i=1}^{N} C_i = j\text{번째 유니트의 비용}</td>
<td></td>
</tr>
</tbody>
</table>

| | | | |
| | | | |

58
Equal Apportionment Technique은 운용데이터가 없을 때 사용되는 방법으로 TDX-1(A)의 신뢰도배분에 적용되었고, ARINC Technique과 AGREE Method은 과거 데이터가 확보된 경우 사용하는 방법으로 미국방성(MIL)에서 적용되고 있다. Mathematical Technique은 비용까지 고려된 신뢰도 배분으로 불러에 대한 최적의 신뢰도가 할당되나 그 과정이 매우 복잡하여 현재까지 적용된 사례는 거의 없다.

본 연구에서는 TDX-1(A)운용데이터를 근거로 시스템의 구조 및 구성PBA의 가중치를 고려하여 TDX-10시스템의 신뢰도를 배분하였다. 시스템을 구성하고 있는 PBA에서는 각 PBA의 가중치를 고려한 ARINC Technique을 적용하였으며, 유니트 이상 단계에서는 S/W(Program)를 포함하고 있는 유니트와 H/W만으로 구성되어 있는 유니트로 분류하여 각각의 신뢰도의 가중치(여기서는 중요도)를 고려한 AGREE Method를 적용하였다.

시스템의 신뢰도 구조가 (그림 1)과 같이 구성되었을 때 본 연구에서 사용된 신뢰도 배분 방법은 다음과 같다.

6X와 하면(가중치 산출은 절 2.2.2 참조), 시스템의 신뢰도 구조는 다음과 같이 고장률(H/W 고장률) 형태로 나타낼 수 있다. (ARINC Technique)

![그림2] 신뢰도 구조-H/W 고장률

(그림 2)의 고장률 4X와 6X는 H/W 반에 의한 고장률이므로 시스템 불가용도를 구하기 위해서는 H/W 고장률에 S/W 및 운용중 에러에 의한 고장률이 포함된 전체 고장률로 계산되어야 한다. (AGREE Method)

H/W가 차지하는 고장률의 비율은 프로세서의 경우 프로세서 전체 고장률의 35%이며, Device의 경우는 Device 전체 고장률의 80%를 차지하고 있다. (2가 참조)

구성품 A는 H/W반으로 구성된 Device이므로 H/W 고장률에 100/80을 곱함으로써, 구성품 B는 프로세서이므로 H/W 고장률에 100/35를 곱함으로써 각 구성품의 전체 고장률을 구할 수 있다. (그림 3) 참조

![그림3] 신뢰도 구조- 전체 고장률(H/W, S/W 및 운용중 에러)

이때 수리율(μ)을 0.5라 할 때 불러의 불가용도는 각각

\[(5X)^2, (18X)^2\]
이 된다. 시스템의 불가용도는 각 부수의 불가용도 합이므로 시스템의 신뢰도 목표치(가용도)는

\[
\left(\frac{5X}{0.5}\right)^n \cdot \left(\frac{18X}{0.5}\right)^m = 1 - \text{시스템 신뢰도 목표치(가용도)}
\]

가 된다. 시스템의 신뢰도 목표치를 고장시간이 1년동안 1분 이하로 했을때 시스템 불가용도는

시스템 불가용도 = 1(분) ÷ 60(분/시간) ÷ 24(시간/일) ÷ 365(일/년)

= 1900 [FIT]

가 되어 일반 PBA고장률(H/W 고장에 의한 기준 고장률) X는

1396X² = 1900 [FIT]

X = 36892 [FIT]

가 됨을 알 수 있다.

따라서 각 PBA의 고장률은 앞에서 구한 기준 고장률에 각 PBA 고장률 가중치를 곱하면 된다. 예를들어 구성품 A를 구성하고 있는 PBA중 가중치가 2배인 PBA의 신뢰도 목표치(고장률)는 다음과 같이 73784 [FIT]임을 알 수 있다.

2×36892 [FIT] = 73784 [FIT]

W만으로 구성)고장 현황표로 H/W가 차지하는 고장비율이 80%, 그외 운용중 예러가 20% 차지하고 있음을 보이다고 한다.

〈표 2〉 TDX-1(A) 운용데이터의 Device 고장 현황

<table>
<thead>
<tr>
<th>Device</th>
<th>고장 수</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H/W</td>
<td>S/W</td>
</tr>
<tr>
<td>DTID & ETC</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>MFSID & PBID</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>LCD</td>
<td>356</td>
<td>1</td>
</tr>
<tr>
<td>RGD & TGD</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>ITED & DTED</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>SWCD & DLCD</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>POWER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-1 (PCM)</td>
<td>20</td>
<td>54</td>
</tr>
<tr>
<td>ETC.</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>계</td>
<td>479</td>
<td>92</td>
</tr>
</tbody>
</table>

구성 비율 84% 16% 100%

* KTA운용보건본부 ‘TDX-1(A) 운용 데이터’에 근거 (87.12.12~88.2)

〈표 3〉은 TDX-10의 신뢰도 배분에 적용되는 H/W, S/W 및 운용중 예러의 현황을 나타낸것이다.

〈표 3〉 구성품 종류별 고장 분포 비율

<table>
<thead>
<tr>
<th>구성품</th>
<th>H/W</th>
<th>S/W 및 운용중예러</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>프로세서</td>
<td>35</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Device</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

PBA 고장률 가중치

PBA의 신뢰도를 고려하면 시스템을 구성하는 PBA종류는 일반용, 정합용(Access), 프로세서용 및 에러리용으로 분류된다. 〈표 4〉는 TDX-1(A)의 운용데이터를 근거로한 PBA 종류별 고장형태 및 고장률을 나타낸것이다.
표 4 TDX-1(A) PBA 종류별 고장현황

<table>
<thead>
<tr>
<th>구분</th>
<th>운용 데이터</th>
<th>예측값</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit 명</td>
<td>PBA 명</td>
</tr>
<tr>
<td>일반용</td>
<td>MFSID & PBID</td>
<td>MSRB (MFSID)</td>
</tr>
<tr>
<td>(Switch, Power Signal 및 일반)</td>
<td>RGD & TGD</td>
<td>PBRB (PBID)</td>
</tr>
<tr>
<td></td>
<td>POWER</td>
<td>DTSB (TGD)</td>
</tr>
<tr>
<td></td>
<td>SWCD & DLCD</td>
<td>RGSB (RGD)</td>
</tr>
<tr>
<td>경합용</td>
<td>ALCID</td>
<td>GSLB (ALI)</td>
</tr>
<tr>
<td>(Subscriber & Trunk)</td>
<td>DTID & ETC</td>
<td>TITB (DTI)</td>
</tr>
<tr>
<td></td>
<td>T-1</td>
<td>5590</td>
</tr>
<tr>
<td>프로세서용</td>
<td>T-level</td>
<td>CPB</td>
</tr>
<tr>
<td></td>
<td>B-level</td>
<td>5360</td>
</tr>
<tr>
<td>메모리용</td>
<td></td>
<td>EMB</td>
</tr>
</tbody>
</table>

* : KTA 운용정보본부 'TDX-1(A) 운용데이터'에 근거 (*78.12 - *88.2)

표 4에서 일반용 PBA의 고장률 가중치를 기준으로 하여 1로 할때(Normalize 시킴), 정합용 PBA의 고장률은 예측값에서는 일반용 PBA와 비슷하고(고장률 가중치 1). 운용데이터에서는 일반용 device 고장률에 비해 정합용 device 고장률이 5배 정도 높은 것으로 나타나 있으나 정합용 device에는 일반용 PBA를 포함하고 있으므로 일반용 PBA를 제외한 정합용 PBA의 고장률은 3배 정도 높은 것으로 사료된다.(고장률 가중치 3). 따라서 본 연구에서는 정합용 PBA의 고장률 가중치를 운용데이터에서의 고장률 가중치 3과 예측값에서의 가중치 1을 평균한 2로 하였다.

프로세서는 프로세서용 PBA, 메모리용 PBA 및 기타 인터페이스용 PBA(일반용 PBA)로 구성되어 있고, 프로세서용 PBA의 고장률 예측치가 일반용 PBA의 고장률 예측치보다 약 1.5배 높으므로 프로세서용 PBA의 고장률 가중치는 1.5로 하였다.

또한 표 4에서 운용데이터에서의 프로세서 고장률에서는 메모리용 PBA의 고장률이 포함되어 있으므로, 메모리 소자의 예측치가 운용 데이터보다 크게 평가지점(5~10 배)을 감안하면 메모리용 PBA의 고장률 가중치는 운용 데이터에서 프로세서의 고장률 가중치(약 7~8)에서 프로세서용 PBA의 고장률 가중치(1.5)와 인터페이스용 PBA들의 가중치(약 2)의 합을 제외한 값인 4 정도가 된다.

표 5는 TDX-10 시스템 신뢰도 배분식 적용할 PBA 고장률 가중치를 나타낸 것이다.

표 5 PBA 고장률 가중치

<table>
<thead>
<tr>
<th>구분</th>
<th>가중치</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반용 PBA</td>
<td>1</td>
</tr>
<tr>
<td>정합용 PBA</td>
<td>2</td>
</tr>
<tr>
<td>프로세서용 PBA</td>
<td>15</td>
</tr>
<tr>
<td>메모리용 PBA</td>
<td>4</td>
</tr>
</tbody>
</table>

3. TDX-10 신뢰도 배분
가. INS 신뢰도 배분

TDX-10의 시스템의 신뢰도 구조는 TDX-10의 서브시스템 INS의 구조와 같으며(TDX-10 H/W
신뢰도 구조 참조, TE/Q-88-002, ‘88.5.7) INS의 신뢰도 구조는 다음과 같다.

![그림 4] INS의 신뢰도 구조

(그림 4)의 INS 신뢰도 구조에 따라 II장 2.2.1 구성 PBA의 고장률 가중치를 II장 1절의 신뢰도 배분에 적용하면 (표 6)과 같이 INS의 H/W 고장률 가중치를 구할 수 있다. (ARINC Technique 참조)

<table>
<thead>
<tr>
<th>블록</th>
<th>가중치</th>
<th>블록</th>
<th>가중치</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP, NTP, ASP</td>
<td>20.5</td>
<td>LSP, NSP</td>
<td>3.5</td>
</tr>
<tr>
<td>CI</td>
<td>5</td>
<td>BBU1</td>
<td>3</td>
</tr>
<tr>
<td>MBU</td>
<td>2</td>
<td>MCU</td>
<td>4</td>
</tr>
<tr>
<td>NRU</td>
<td>2</td>
<td>NSU</td>
<td>2</td>
</tr>
<tr>
<td>SCU</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(표 6)의 (b)와 (c)의 (표 3)을 II장 1절의 신뢰도 합법에 적용하면 (표 7)과 같은 INS 구성품의 신뢰도 가중치를 구할 수 있다. (AGREE Method 참조)

(표 7) INS 구성품의 신뢰도 가중치

<table>
<thead>
<tr>
<th>블록</th>
<th>가중치</th>
<th>블록</th>
<th>가중치</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP, NTP, ASP</td>
<td>62</td>
<td>LSP, NSP</td>
<td>11</td>
</tr>
<tr>
<td>CI</td>
<td>15</td>
<td>BBU1</td>
<td>4</td>
</tr>
<tr>
<td>MBU</td>
<td>4</td>
<td>MCU</td>
<td>12</td>
</tr>
<tr>
<td>NRU</td>
<td>4</td>
<td>NSU</td>
<td>4</td>
</tr>
<tr>
<td>SCU</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMT의 신뢰도 목표치는 다음과 같다.

(표 8) INS의 신뢰도 목표치

<table>
<thead>
<tr>
<th>신뢰도 목표치</th>
<th>3 분/년</th>
<th>5708 [FIT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>수 리 울 (μ)</td>
<td>고장량 평균 수리시간 2시간 이하</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*주 : 3(분)/60(분/시간)÷24(시간/일)÷365(일/년)

시스템의 신뢰도 목표치에 따라 (표 7)의 값을 1절의 가중도 계산식에 적용하여 PBA의 기준 고장률을 구하면

\[49032 \times 2 = 5708 \text{ [FIT]} \]
\[X = 10770 \text{ [FIT]} \]

가 된다.

따라서 시스템을 구성하고 있는 PBA의 기준 고장률은 10770 [FIT] 이다.

나. 가입자회선 및 중계선 신뢰도 배분

가입자회선 및 중계선 신뢰도 구조는 (그림 5)와 같다.

(그림 5)의 (b)에서 TDX-10의 중계선은 현재 T1만으로 구성되므로 본 연구에서는 TDX-10 중계선의 신뢰도는 T1만으로 구성하였다.

(그림 5)에서 LSI-S와 LSI-T의 신뢰도 구조는 k of n으로 최악의 조건을 감안하여 LSI-S의 5 of 6 구조를 직렬구조로 하여 LSI-T에도 적용하였다. 따라서 설계로 표시된 부분을 제외한 가입자회선과 중계선의 신뢰도 구조는 같다 나타난다. (표 5)에 의해 가입자회선 및 중계선을 구성하고 있는 PBA의 고장률(H/W에 의한 고장률) 고려한 H/W 신뢰도 가중치는 (표 9)과 같이 구성된다.

참고로 ASI의 경우 GLS, ECA, ALBB 및 POWER-A로 구성되나 이중 GLS는 16 가입자를 수용하고 있으므로 한 가입자에 관련된 GLS의 고장률 가중치는 공통분부의 고장률(1/2)과 한
(a) 가입자회선 신뢰도 구조

(b) 중계선 신뢰도 구조

* : (a)의 DSI와 (b)의 ATI는 추후 결정
** : 절 23.1의 INS 구조이며 B-CDL과 B-SSW는 가입자회선 및 중계선에 포함되어 있음.

〈그림5〉 가입자회선 및 중계선 신뢰도 구조

가입자에 관련된 부품의 고장률(1/2x1/16=1/32 : 무시가능)을 합한 1/2에 정합용 PBA 고장률 가중치 2를 곱한 1이 되고, ALBB는 18가지의 PBA를 수용하고 있으나 이중 한 가입자에 관련된 부분은 PBA 3장이므로 ALBB의 고장률 가중치는 1/18이 된다. 이는 DTI에도 마찬가지로 적용되며 CTBB의 고장률 가중치는 1/3이 된다. (ARINC Technique)

〈표9〉 가입자회선 및 중계선 H/W의 신뢰도 가중치

<table>
<thead>
<tr>
<th>구분</th>
<th>가중치</th>
<th>구분</th>
<th>가중치</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP,TNP,ASP</td>
<td>20.5</td>
<td>LSP,NSP</td>
<td>3.5</td>
</tr>
<tr>
<td>SSP,TSP,LIP,LTP,CLIP</td>
<td>45</td>
<td>SSW 1 (64 x 64 기준)</td>
<td>352</td>
</tr>
<tr>
<td>TSW (4 K)</td>
<td>12</td>
<td>SSW 2</td>
<td>8</td>
</tr>
<tr>
<td>CI</td>
<td>5</td>
<td>CDL</td>
<td>14</td>
</tr>
<tr>
<td>DCI</td>
<td>3.3</td>
<td>ASI</td>
<td>3.2</td>
</tr>
<tr>
<td>LDL</td>
<td>14</td>
<td>DTI</td>
<td>3.3</td>
</tr>
<tr>
<td>BBU 2</td>
<td>2</td>
<td>LSI</td>
<td>8</td>
</tr>
</tbody>
</table>

〈표10〉 구성품의 신뢰도 가중치

<table>
<thead>
<tr>
<th>구분</th>
<th>가중치</th>
<th>구분</th>
<th>가중치</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP,TNP,ASP</td>
<td>62</td>
<td>LSP,NSP</td>
<td>11</td>
</tr>
<tr>
<td>SSP,TSP,LIP,LTP,CLIP</td>
<td>14</td>
<td>SSW 1 (64 x 64)</td>
<td>440</td>
</tr>
<tr>
<td>TSW (4 K)</td>
<td>15</td>
<td>SSW 2 (64 x 64)</td>
<td>10</td>
</tr>
<tr>
<td>CI</td>
<td>15</td>
<td>CDL</td>
<td>42</td>
</tr>
<tr>
<td>DCI</td>
<td>4</td>
<td>ASI</td>
<td>4</td>
</tr>
<tr>
<td>LDL</td>
<td>42</td>
<td>DTI</td>
<td>4</td>
</tr>
<tr>
<td>BBU 2</td>
<td>3</td>
<td>LSI</td>
<td>10</td>
</tr>
</tbody>
</table>
〈표 13〉 가입자회선 및 중계선 공통 부분의 PBA기준 고장률

<table>
<thead>
<tr>
<th>신뢰도 목표치</th>
<th>기준 PBA [FIT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 분/년</td>
<td>11858</td>
</tr>
<tr>
<td>10 분/년</td>
<td>14177</td>
</tr>
<tr>
<td>17 분/년</td>
<td>18493</td>
</tr>
</tbody>
</table>

따라서 〈표 14〉의 가입자회선 및 중계선의 구조에서 실현으로 표시된 정합용 Device인 DTI, DCL, ASI의 신뢰도 목표치는 〈표 14〉와 같이 나타낼 수 있다.

〈표 14〉 가입자회선 및 중계선의 정합용 Device 신뢰도 목표치

<table>
<thead>
<tr>
<th>구분</th>
<th>정합용 Device 신뢰도 목표치</th>
<th>불가용도 [FIT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>가입자 회선</td>
<td>18 분/년</td>
<td>34246</td>
</tr>
<tr>
<td>T1</td>
<td>10 분/년</td>
<td>19026</td>
</tr>
</tbody>
</table>

〈표 14〉의 신뢰도 목표치에 수리율(μ)을 0.5로 적용하여 정합 Device 및 H/W 고장률을 구하면 〈표 15〉와 같다.

〈표 15〉 정합용 Device의 고장률 및 H/W 고장률

[단위 : FIT]

<table>
<thead>
<tr>
<th>구분</th>
<th>정합용 Device 고장률</th>
<th>정합용 Device H/W 고장률</th>
</tr>
</thead>
<tbody>
<tr>
<td>가입자 회선</td>
<td>17123</td>
<td>13698</td>
</tr>
<tr>
<td>T1</td>
<td>9513</td>
<td>7610</td>
</tr>
</tbody>
</table>

〈표 15〉중계선의 정합용 Device의 H/W 고장률과 〈표 10〉 DTI 신뢰도 가중치에서 PBA의
기존 고장률은 약 1900 [FIT] (7610 FIT ÷ 4) 정도이다. PBA의 기존 고장률은 1절의 신뢰도 배분 방법에서 나타난 바와 같이 INS, 가입자회선 및 중계선에 모두 적용될 수 있어야 한다. (가장 낮은 PBA 고장률을 채택)

따라서 여기서 구한 PBA 기존 고장률 1900 [FIT]는 실제로 실험하기가 거의 불가능한 값으로 수정이 요구된다. 이의 대안으로는 신뢰도 배분에서 적용된 수리율(μ)을 높이는 방안이 있다.

〈표 16〉 PBA 기존 고장률 및 수리율(μ)에 따른 신뢰도

<table>
<thead>
<tr>
<th>기존고장률 [FIT]</th>
<th>구분</th>
<th>INS</th>
<th>가입자회선 및 중계선 공통 부분</th>
<th>가입자회선 및 중계선의 정합용 Device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>수리율 : 0.5</td>
<td>수리율 : 1</td>
</tr>
<tr>
<td>7000</td>
<td>불가용도</td>
<td>2403</td>
<td>4642</td>
<td>56000</td>
</tr>
<tr>
<td></td>
<td>신뢰도</td>
<td>1'16"</td>
<td>2'26"</td>
<td>29'26"</td>
</tr>
<tr>
<td>8000</td>
<td>불가용도</td>
<td>3138</td>
<td>6063</td>
<td>64000</td>
</tr>
<tr>
<td></td>
<td>신뢰도</td>
<td>1'39"</td>
<td>3'12"</td>
<td>33'38"</td>
</tr>
<tr>
<td>9000</td>
<td>불가용도</td>
<td>3972</td>
<td>7673</td>
<td>72000</td>
</tr>
<tr>
<td></td>
<td>신뢰도</td>
<td>2'05"</td>
<td>4'02"</td>
<td>37'50"</td>
</tr>
<tr>
<td>10000</td>
<td>불가용도</td>
<td>4903</td>
<td>9474</td>
<td>80000</td>
</tr>
<tr>
<td></td>
<td>신뢰도</td>
<td>2'35"</td>
<td>4'59"</td>
<td>42'03"</td>
</tr>
</tbody>
</table>

신뢰도 목표치 3 분/년 7 분/년

T1 : 10 분/년, 가입자회선 : 18 분/년

4. 검토

TDX-10 시스템의 PBA 기존 고장률은 INS, 가입자회선 및 중계선의 공통 부분 및 정합용 device에 공통으로 적용되어 신뢰도 목표치를 만족시키야 하므로. 〈표 16〉에서 INS의 신뢰도 목표치 3 분/년과 가입자회선 및 중계선의 신뢰도 목표치인 28분/년과 20분/년을 만족시키는 기준 PBA 고장률은 8,000 [FIT]으로 하되, 수리율은 INS와 가입자회선 및 중계선의 공통 부분이 0.5를, 가입자회선 및 중계선의 정합용 Device에는 1로 선택하는 것이 최적임을 알 수 있다.

이들 데이터는 〈그림 4〉와 〈그림 5〉의 신뢰도 구조에 대입하여 신뢰도를 구하면 〈표 17〉과 같다.

〈표 17〉 PBA 기존고장률에 의한 신뢰도

<table>
<thead>
<tr>
<th>인분</th>
<th>신뢰도 목표치</th>
<th>신뢰도 배분 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS</td>
<td>3분/년</td>
<td>1분 28초/년</td>
</tr>
<tr>
<td>가입자회선</td>
<td>28분/년</td>
<td>22분 47초/년</td>
</tr>
<tr>
<td>중계선</td>
<td>20분/년</td>
<td>19분 57초/년</td>
</tr>
</tbody>
</table>

〈표 17〉의 신뢰도는 요구된 신뢰도 목표치를 모두 만족하고 있음을 보여주고 있다.

정합용 device를 구성하고 있는 PBA들의 고
장표는 가입자회선 및 종계선의 신뢰도 목표치에서 INS와 가입자회선 및 종계선의 공통부분의 신뢰도 배분치를 빠 나머지 값으로 배분되어 진다. 즉 가입자회선 정합용 device에 18분 24초(36000 FIT)가, 그리고 종계선 정합용 device에 15분 37초(29706 FIT)가 배분되어 GSLA는 가중치가 1이고 10,000[FIT]가, 그리고 TITA는 가중치가 2이고 13,000[FIT]가 배분되어진다.(3절 나향 참조)
이상은 종합한 TDX-10의 신뢰도 배분 결과를 표18~20에 나타내었다.

표18 신뢰도 배분 결과 - 서브 시스템

<table>
<thead>
<tr>
<th>서브시스템 명</th>
<th>불가용도 [FIT]</th>
<th>불가용률 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-NSH</td>
<td>81</td>
<td>2%</td>
</tr>
<tr>
<td>INCS</td>
<td>1359</td>
<td>43%</td>
</tr>
<tr>
<td>NTCS</td>
<td>1359</td>
<td>43%</td>
</tr>
<tr>
<td>LAS</td>
<td>27790</td>
<td>14.36%</td>
</tr>
<tr>
<td>SSS-S</td>
<td>169</td>
<td>5%</td>
</tr>
<tr>
<td>LSS</td>
<td>1181</td>
<td>37%</td>
</tr>
<tr>
<td>B-SSW</td>
<td>1317</td>
<td>41%</td>
</tr>
<tr>
<td>B-CDL</td>
<td>933</td>
<td>29%</td>
</tr>
<tr>
<td>ASCS</td>
<td>1359</td>
<td>43%</td>
</tr>
<tr>
<td>TAS</td>
<td>23590</td>
<td>12.24%</td>
</tr>
<tr>
<td>SSS-T</td>
<td>162</td>
<td>5%</td>
</tr>
</tbody>
</table>

표19 신뢰도 배분 결과 - 블럭 및 유니트 신뢰도(고장률)

<table>
<thead>
<tr>
<th>블럭 및 유니트 명</th>
<th>H/W 고장률</th>
<th>S/W 및 PE 고장률</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP, NTP, ASP</td>
<td>164000</td>
<td>304571</td>
</tr>
<tr>
<td>LSP, NSP</td>
<td>28000</td>
<td>52000</td>
</tr>
<tr>
<td>SSP, TSP, LIP</td>
<td>36000</td>
<td>66857</td>
</tr>
<tr>
<td>STAP, CLIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSW (4k)</td>
<td>96000</td>
<td>24000</td>
</tr>
<tr>
<td>CI</td>
<td>40000</td>
<td>74385</td>
</tr>
<tr>
<td>DCI</td>
<td>29000</td>
<td>7250</td>
</tr>
<tr>
<td>DTI</td>
<td>29000</td>
<td>7250</td>
</tr>
</tbody>
</table>

表20 신뢰도 배분 결과 - PBA 고장률

<table>
<thead>
<tr>
<th>PBA</th>
<th>고장률</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBB</td>
<td>8,000</td>
</tr>
<tr>
<td>ASCA</td>
<td>8,000</td>
</tr>
<tr>
<td>CPIA</td>
<td>8,000</td>
</tr>
<tr>
<td>CTBB</td>
<td>8,000</td>
</tr>
<tr>
<td>CTIA</td>
<td>13,000</td>
</tr>
<tr>
<td>DCCA</td>
<td>8,000</td>
</tr>
<tr>
<td>DLBB</td>
<td>8,000</td>
</tr>
<tr>
<td>DLIA</td>
<td>8,000</td>
</tr>
<tr>
<td>ECCA</td>
<td>8,000</td>
</tr>
<tr>
<td>GSLA</td>
<td>20,000</td>
</tr>
<tr>
<td>HWIA</td>
<td>8,000</td>
</tr>
<tr>
<td>INBB</td>
<td>8,000</td>
</tr>
<tr>
<td>INRA</td>
<td>8,000</td>
</tr>
<tr>
<td>INTA</td>
<td>8,000</td>
</tr>
<tr>
<td>MACA</td>
<td>8,000</td>
</tr>
<tr>
<td>MCCA</td>
<td>8,000</td>
</tr>
<tr>
<td>MCGU</td>
<td>8,000</td>
</tr>
<tr>
<td>MDBB</td>
<td>8,000</td>
</tr>
<tr>
<td>MDXA</td>
<td>8,000</td>
</tr>
<tr>
<td>MECA</td>
<td>32,00</td>
</tr>
<tr>
<td>OTXD</td>
<td>8,000</td>
</tr>
<tr>
<td>PCCA</td>
<td>12,000</td>
</tr>
<tr>
<td>PICA</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-A</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-B</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-C</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-D</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-E</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-F</td>
<td>8,000</td>
</tr>
<tr>
<td>POWER-G</td>
<td>8,000</td>
</tr>
<tr>
<td>PPBB</td>
<td>8,000</td>
</tr>
<tr>
<td>PPCA</td>
<td>8,000</td>
</tr>
<tr>
<td>PPIA</td>
<td>8,000</td>
</tr>
<tr>
<td>RCBB</td>
<td>8,000</td>
</tr>
<tr>
<td>SIBB</td>
<td>8,000</td>
</tr>
<tr>
<td>SMBB</td>
<td>8,000</td>
</tr>
<tr>
<td>SMXA</td>
<td>8,000</td>
</tr>
<tr>
<td>SSCA</td>
<td>8,000</td>
</tr>
<tr>
<td>SSIA</td>
<td>8,000</td>
</tr>
<tr>
<td>TCCA</td>
<td>8,000</td>
</tr>
<tr>
<td>TCMA</td>
<td>8,000</td>
</tr>
<tr>
<td>MGBB</td>
<td>8,000</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>MPMA</td>
<td>12,000</td>
</tr>
<tr>
<td>NCPA</td>
<td>8,000</td>
</tr>
<tr>
<td>NCPD</td>
<td>8,000</td>
</tr>
<tr>
<td>NRCA</td>
<td>8,000</td>
</tr>
<tr>
<td>NSMA</td>
<td>8,000</td>
</tr>
<tr>
<td>OLCA</td>
<td>8,000</td>
</tr>
<tr>
<td>OLIA</td>
<td>8,000</td>
</tr>
<tr>
<td>ORXD</td>
<td>8,000</td>
</tr>
</tbody>
</table>

III. 결론

본고에서는 회로패의 복잡도와 구성품의 신뢰도 가중치를 고려하여 상위 레벨에서 하위 레벨까지 단계별로 배분하여, TDX-10 시스템의 서브 시스템, 블록, 유니트 및 회로패의 다양한 신뢰도 목표치를 제시하였다.

본 연구 결과에서 제시된 회로패의 신뢰도 목표치는 TDX-1A 시스템의 신뢰도 예측치와 유사하다. 이는 회로패의 복잡도가 크게 다르지 않는 TDX-1A 시스템에서 사용되는 부품의 신뢰도 수준을 만족하는 부품은 TDX-10 시스템에 사용될 수 있음을 의미한다.

즉, TDX-10 부품의 신뢰도 수준은 TDX-10 부품 신뢰도 수준과 유사하다. 또한 TDX-10 시스템의 POWER 경우에도 TDX-1A 시스템의 POWER 고장률 예측치보다 높게 양화되었으나, TDX-10 시스템의 정합용 PBA 고장률 목표치는 TDX-1A 고장률 예측치보다 높게 양화되어 있다.

따라서 본고에서 제시된 신뢰도 배분 결과를 TDX-10 시스템 설계에 적용하기에는 큰 어려움이 없으리라 사료된다. 만일 TDX-10 시스템에서 설계된 PBA 또는 블록의 신뢰도 예측치가 본고에서 제시된 목표치를 초과할 경우에는 신뢰도를 다시 배분하여 조정하거나 신뢰도 목표치에 어긋나는 다른 블록과 서로 보상하여 제시된 신뢰도 목표치를 만족시키는 작업이 필요할 것이다.

앞으로 본 연구에 계속하여 시스템 신뢰도 목표치 설정에 관한 연구가 진행되어야 할 것이며, 보다 정확한 시스템의 신뢰도 배분을 위해 더 많은 운용데이터가 연구 및 개발업무에 feedback 되어야 할 것이다.