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Deep neural networks (DNNs) are widely used in various domains such as speech and
image recognition. DNN software frameworks such as Tensorflow and Caffe
contributed to the popularity of DNN because of their easy programming environ-
ment. In addition, many companies are developing neuromorphic processing units
(NPU) such as Tensor Processing Units (TPUs) and Graphical Processing Units (GPUs)
to improve the performance of DNN processing. However, there is a large gap
between NPUs and DNN software frameworks due to the lack of framework support
for various NPUs, A bridge for the gap is a DNN software platform including DNN
optimized compilers and DNN libraries. In this paper, we review the technical trends of

DNN software platforms.
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ANN Artificial Neural Network
CPU Central Processing Unit
CSE Common Subexpression Elimination
DNN Deep Neural Network
DSP Digital Signal Processors
FPGA Field—Programmable Gate Array
GPU Graphics Processing Unit
HW Hardware
ICT Information and Communications Technology
IR Intermediate Representation
ISA Instruction Set Architecture
NPU Neural Processing Unig
RNN Recurrent Neural Networks
SNN Spiking Neural Network
SW Software
TVM Tensor Virtual Machine
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