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As face recognition (FR) has been well studied over the past decades, FR technology
has been applied to many real-world applications such as surveillance and biometric
systems. However, in the real-world scenarios, FR performances have been known to
be significantly degraded owing to variations in face images, such as the pose,
illumination, and low-resolution, Recently, visual inteligence technology has been
rapidly growing owing to advances in deep learning, which has also improved the FR
performance. Furthermore, the FR performance based on deep learning has been
reported to surpass the performance level of human perception. In this article, we
discuss deep-learning based high-performance FR technologies in terms of representa-
tive deep-learning based FR architectures and recent FR algorithms robust to face
image variations (i.e., pose-robust FR, illumination-robust FR, and video FR). In
addition, we investigate big face image datasets widely adopted for performance

evaluations of the most recent deep-learning based FR algorithms,
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