고온초전도 이종구조 및 삼단자 전자소자

강광용* 이종용* 성건용* 서정대**

목 록

I. 서 론
II. 초전도트랜지스터의 작동원리
III. 반도체기판상에 고온초전도
 박막의 증착방법
IV. 초전도소자의 전기적 특성
V. 결 론

〈요 약〉

고온초전도체의 전자증용 예를 들면, 조합
순절합과 같은 diode-type의 초전도소자 뿐만
아니라 반도체 트랜지스터와 같은 고온초전도
삼단자소자의 개발 및 실용화를 위해서 해결
해야 할 당면문제는 많다. 그 중에서 특히, 실
리론 기판위에 고온초전도 단결정박막을 성장
시키는 것과 양질의 유전체 buffer층을 제조하
는 것들이 있다.

초전도체/반도체구조에서 초전도전자양은
근접효과에 의해 반도체속으로 확산되어 가
며, 이러한 현상을 이용하여 초전도 트랜지스
터와 초전도 전자파소자와 같은 신기능 초전
도소자를 구현할 수 있다. 그리고 이들 소자
의 동작원리는 반도체속에서의 초전도 좌동합
수(절서파라미터)의 제어에 기초를 두고 있
다.
고온초전도 일렉트로닉스를 거쳐하며, 중요
한 용용으로서 거론되고 있는 분야는 1) one-
wafer computer의 꿈을 실현하기 위한 기반
기술로 꼽히고 있는 초전도배선연구, 2) 성능에
서 반도체소자를 능가하는 초전도소자, 3) 21
세기를 전망하면서 점적회로 연구자들의 터깃
이 되고 있는 초전도집적회로 및 일렉트로닉
스, 그리고 4) 광범위한 용용이 기대되는 초
정밀 센서인 SQUID 소자 등이 있다.

I. 서 론

산화물 초전도체의 박막연구가 큰 진전을
보이자, 반도체·초전도체의 복합소자(hybrid)
연구가 활발해지기 시작했다. 따라서 본고에
서는 산화물 고온초전도체와 반도체를 적층시
킬 구조를 가지는 새로운 형태의 트랜지스터
구현에 대해 소개하기로 한다.[1,2,3]

이미 개발된, 반도체 바이오크리아 트랜지스터
는 소형화 됨으로써 고속화를 이룩하였다. 그
럼지만 반도체의 저항이 급속히 100~1000배
증가로 되는 커다란 악점을 보여주었다. Base
층의 두께를 1000Å 이하로 하면 배우스층내
에 전위분포가 생겨난다고 하는 문제점도 노
출시켰다. 1960년대에는 급속을 배우로 사
용하는 metal-base transistor가 제안되었다.
그러나 metal-base transistor가 제안된 당시에
는 반도체기판위의 급속박막을 적층하는(de-
position) 기술이 없어 그러한 트랜지스터를
구현하는 데는 어려움이 많았다[4,5]. 1980년대
에 들어와서는 초고전공 박막제조장비를 이용
하여 박막의 두께를 atomic scale까지도 제어
하기 때문에 Si과 실리사이드의 적층이 가능
하게 되었다[6,7]. 한편 이론적으로 metal-base
transistor에서는 반도체/금속계면에서 투과전
자의 양자역학적 반사가 거의 50%까지 도달
한다고 하는 실험점이 지적되기도 했다[8].

초전도-base transistor는 IBM의 Frank 등이
제안하였으며, 초전도체로는 Nb를 사용하였으
며, 실제로 많은 연구자가 실험을 통해 선
구적인 연구를 수행하였으나 중폭작용을 확인
하는 결과에는 도달하지 못했다[9~12].

1986년 고온초전도체의 발견은 다시금 초전
도체를 base로 하는 것에 희망을 가지게 했다.
Metal-base transistor에서 문제가 되었던 양자
역학적 반사는 트랜지스터 구동전압의 범위내
에서 극히 작게 할 수 있음이 시뮬레이션 결
과로 밝혀지게 되었다[13]. 고온초전도체가 저
carrier 농도의 산화물이기 때문에, 에미터로
부터 주입된 전하의 주입에너지가 base-collector
의 장벽높이와 거의 같은 정도에서 양자역
학적 반사가 최소로 된다는 것이다. Si이나
InAs의 경우에는 각각 50mV, 5mV일 때
base-collector의 장벽높이보다 낮은 곳에서 반
사가 최소로 되었다.

Superconducting-base transistor의 구현을
고려할 때, 초전도체·반도체계면에 Schottky
barrier가 존재한다는 것과 다르기 Schottky
barrier가 0.1eV정도이기 때문에 저소비 전력
화하는 데 유리한 조건을 부여할 수 있다. 한
편 에미터로부터 주입된 준입자(quasi-particle)
가 배이스중에서 산란되지 않고 투과하는
것이 필요하며, 그렇게 되기 위해서는 current
charges의 상전도상태에서의 평균자유행로가

155
긴 것이 바람직하다. 다행스럽게도 YBa$_2$Cu$_3$O$_y$
의 경우, 평균 자유행으로는 100K에서 100Å 이상
이라는 것이 알려져 있다[14].

II. 초전도 트랜지스터의 작동
원리

일반적으로 바이올라 트랜지스터의 최대발
신주파수 f_{MAX}는,

$$f_{\text{MAX}} = \left(\frac{\alpha \mu / 8\pi c}{C_c} \right)^{1/2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots (1)$$
로 쓸 수 있다. 여기서 α, μ, C_c는 DC 상
태에서의 전류약수, 메이스 저항, 결합용량
및 차단주파수(Threshold frequency)이다.

(1)식으로부터 알 수 있듯이, r_b를 작게할
수 있다면 f_{MAX}를 한없이 크게 할 수 있다.
그
러므로 저항계로의 초전도체를 메이스재료로
사용하여야도 merits는 없다. (그림 1)에 metal-
base transistor(MBT)와 superconductive-base
transistor(SBHET)의 간단한 동가회로를 나타
내었다.

초전도체는 특정 온도와 고주파영역에서는
저항이 제로가 아니고 유한한 값을 취하게 되
므로, 그 점을 고려하여 메이스의 동가회로는
inductance L_b과 저항 R_b를 별도접속시킨 것
으로서 나타낼 수 있다. 환연하면, SBHET에
서는 R_b가 크면 클수록 실효(effective) 메이
스 저항은 작아지고 소자성능은 향상된다.

간단한 동가회로로서 SBHET, MBT, Semi-
conductor–bipolar transistor의 소자특성을 평
가(characterization)한 결과를 (그림 2)에 나
타내었다.

(그림 1) 금속 base 및 초전도 base transis-
tor의 간단한 동가회로

f_{MAX}가 흘러간 소자의 성능을 나타내는 유
나터리 이득(unity gain)U_0의 추과수 의존성
을 보면 SBHET가 다른 소자에 비하여 젤전
우수하다는 것을 알 수 있다. 즉 $U_0=1$이 되는
추과수(이론적인 작동상한 추과수)가 반도체
bipolar transistor는 100GHz, MBT는 1THz임
에 비해 SBHET는 무려 6THz였다. 다음으
로 base, collector계면에서의 반사를 고려해보
자.

초전도체 및 반도체 속에서 속도가 감아갔을
때 전자는 투과한다. 이 조건은 반도체속
이구, emitter측의 conduction band가 flat band 상태로 되었을 때에 base로 전자가 주입된다. 주입된 전자는 base부를 ballistic으로(반도직적으로) 진행한다. Base층 두께를 100 Å으로

(a) 초전도 base transistor의 “ON state” 에너지 밴드 diagram

(b) Si collector인 경우

(c) InAs collector인 경우

(그림 3) 양자역학적 반사계수와 주입 에너지와의 관계
하면 주입 전자는 10^7 m/sec의 속도로서 0.1psec정도의 시간에 base–collector계면에 도달한다. Base 채료로서 YBCO를, 그리고 collector 채료로서 Si 또는 InAs를 사용하고 base–collector간의 bias voltage는 0.1, 1, 5 volt로 인가한 경우에 대하여, 양자역학적인 반사계수를 계산한 결과 Si의 경우나 InAs인 경우나 모두 다 반사계수가 2% 이하로 되는 작동영역이 있음이 밝혀졌다.[13] 이러한 메카니즘과 계산결과는 (그림 3)의 (a), (b), (c)에 나타내었다.

Ⅲ. 반도체기판상에 고온초전도 박막의 중착방법

〈게먼져 제기술이 핵심이다〉

Superconducting–base transistor의 작동원리는 다른 초전도 트랜지스터에 비하여 이해하기 쉽다. 그러나 device 제작에는 독자적인 process 기술을 개발할 필요가 있다. 그중 하나로서 현재 연구되고 있는 초전도체·반도체 이중(hetero-structure)계면 제어기술은 최첨단 기술에 속한다.

YBCO계, BSCCO계, TBCCO계의 신화물 고온초전도체와 반도체를 합하여 집합을 만들 경우, 현재로서 유명한 반도체재료는 Si와 GaP등이다. 이들 재료는 우선 격자상수차이가 1%이하로 작다는 이점을 가진다. 그러나 신화물 고온초전도체는 직접 반도체상에 보통의 방법으로 중착시키기 어렵고, 산소나 금속이 Si와 결합하여 원하는 양질의 접합(junction)을 얻을 수 없게 된다. 그 뿐만에 Si상에 금속의 초박막을 중착시키면, Si와 산소가 직접적인 결합을 하지 못하게 하는 공간이 필요하다.

이 금속 초박막이 silicide를 형성하지 못하게 하는 것이 바람직하다. 금속으로는 Bi와 Ag를 선택하여, 신화물초전도체/Si 접합형성은 제일 단계로 고려하여 Si(100)기판위에 금속을 중착시키고 산화방지층으로의 가능성을 살펴보고자 한다.

실험을 위해서는 독자적인 설계기술의 확보가 필요하며, 먼저 2개의 진공챔버를 가진 초고전공장지를 사용한다. 제1번 중착챔버에서 Bi와 Ag를 Si(100)기판위에 성장시키고 성장되는 형태와 구조를 Auger 전자 분광장치(AES)와 반사형 고에너지 전자선 회절(RHEED)장치를 사용하여 조사한다. 필요할 경우 필요한 진공도는 5×10^{-11} Torr 이하로 하고, 실험중에는 대략 6~8 $\times 10^{-10}$ Torr 이하로 유지한다.

Bi 또는 Ag가 Si(100) 표면상에서 성장해가는 형태는 잘 알려져 있는 Auger 전자분광신호강도의 중착시간에 따른 변화로부터 추정하고, Bi 및 Ag 초박막의 surface structure는 RHEED로서 조사한다. (그림 4)에는 Si(100) 기판위에 Bi를 중착시켰을 때의 Auger 전자선 강도의 중착시간에 따른 변화를 나타내었다. 결과진 선의 형태로부터 성장형태를 판단할 수 있다. Bi나 Ag 모두 Si(100)상에서는 Stranski–Krastanov 방식에 따라 성장되는 것으로 생각할 수 있다. 2~3개 원자층 정도의 Bi 또는 Ag를 Si(100)기판위에 중착하고 산소분위기에서 기판온도를 공정변수(parameter)로 하여 이탈특성을 조사하였다. Bi 초박막을 중착시간 Si(100)표면에 산소분위기속에
서 열처리 후에는 떨어지는 Auger 신호강도의 변화를 (그림 5)에 나타내었다.

기판온도를 높히가면서 Bi는 떨어져 나가지만, 표면에 부착된 산소는 약 400℃까지 증가하지 않고, 400℃를 넘어서면 Bi의 이탈량은 급속히 증가하면서 표면의 부착산소량은 급증한다.

즉 Si(100) 기판상에 덧과 있는 Bi 박막은 Si 기판에 대해서 산화방지막으로서의 기능이 충분함을 보여주고 있다.\[15]\.

그러나 산화물 고온초전도 박막을 진공에서 제조할 때, 양질의 예외발열박막을 얻기 위해서는 산화력이 약한 분자산소(O₂)보다는 활성도가 큰 산화원(oxidation source), 예를 들면 온은 radical, ion등을 사용할 필요가 있다.

Ogihara (일본, 신파이스 산업주) 그룹에서는 100% 오존을 사용하여 BiSrCaCuO 박막, YBaCuO 박막, Bi(Ba, Rb)O 박막 등을 제조한 예가 있다.\[16,17,18]\.

Si 기판위에 산화물 고온초전도체를 증착하기 위해서는, 실제의 산화물을 형성하는 조건에서 금속의 이탈상태, Si의 산화상태등을 평가(characterization)하는 것이 필요하다. 금속 초박막으로 증착한 Si(100)면에 기판온도를 실온에서 800℃까지 상승시키고, 기판 표면의 오존분압을 10⁻⁷ 10⁻⁴ Torr까지 변화시키면서 100% 오존을 표면에 확산시킨다. Bi의 경우, 오존분위기에서는 이탈온도가 급격하게 내려가, 300℃ 이하에서도 완전히 이탈해 버린다. 한편 Ag의 경우는, 진공속 600℃ 이하에서 이탈하는 것이 대체, 오존분위기로 바꾸어도 이탈온도는 그다지 변하지 않고 500 550℃까지 온도를 내려도 Si표면에 부착됨이 발현된다. 이것은 Ag 원자의 증착층(coating layer)은,
산화물 고온초전도체의 박막을 제조할 때에 500~550℃까지 산화방지기능을 가질 가능성을 이 높음을 시사하고 있다. Bi나 Ag이외의 다른 금속들, 예를 들어 Au 및 Ba에 대해서도 동일한 실험을 행한 결과를 살펴보자.

Si(100)기판위에 Bi, Ag, Au원자층을 충착하고 오존속에서 열처리함으로써 Bi, Ag, Au 및 O의 각 원소에 대한 Auger 분광실험 결과가 (그림 6)에 나타나 있다.[19,20]. 그리고 최근까지 실험을 행하여 얻어진 금속원자의 이탈 온도와 고온초전도바막의 성장온도와의 관계를 막대그래프의 형태로 정리한 것이 (그림 7)이다.

(그림 7) 고온초전도 박막체조온도와 금속초 박막 이탈온도

다음으로, 충착된 금속초박막이 산화를 방지하는 효과를 설계로 가지는지의 여부를 XPS를 사용하여 조사한 결과를 설명해보자. XPS의 각도의존적 분광실험을 행함으로써 박막표면 근처의 깊이 방향에 대한 조성분석이 가능하다. 700℃ 정도의 오존 분위기에서 열처리하면 Au는 Si기판속으로 100Å 이상 확산해 가는 것이 밝혀졌다. 그러나 Ba의 경우, 650℃의 오존 분위기에서 5분간 열처리해도
Ba는 Si내부로 확산되지 않고 표면에 머물러 있음이 확인되었다.

SiO₂로부터 나온 신호(signal) Si2p(103eV) 와 Si로부터 나온 신호 Si2p(99eV)의 강도비를 XPS의 각도의존성으로 살펴보면, SiO₂의 두께가 약 10Å생성될을 알 수 있다. 그리고 각도의존성에 대한 해석으로부터 Ba는 SiO₂ 층 위에 그대로 적층되어 있음을 확인할 수 있다. ((그림 8) 참조)

IV. 초전도소자의 전기적 특성

현 단계로서는 Si와 같은 공유결합체 반도체상에 산화물 고온초전도체를 증착하는 기술은 지극히 탐구적인 연구개발 단계이기 때문 에 Nb를 도핑한 SrTiO₃가 반도체적인 전기특 성을 보여준다는 특징을 이용하여, 초전도체/ 반도체의 적층 구조 device의 연구가 행해지고 있다. [21,22,23]

일본의 삼양(Sanyo)전기(株)에서 tunnel 주입형의 초전도베이스 삼단자소자의 시험체를 발표하였는데(24), 간단히 설명하면 다음과 같다.

Au/자연산화막/Bi(Ba, K)O/SrTiO₃(Nb doping) 적층구조에 의한 초전도베이스 삼단자소자로서, 작동온도는 4.8K이며 base접지 삼단자소자특성에 있어서 emitter전류를 Ie=10mA로부터 20mA로 증가시켰을 경우, collector전류는 비교적 큰 변화를 보여주었다.

이때 base 접지전류 증폭을 a는

\[a = \frac{\Delta I_c}{\Delta I_e} \]

로 정의된다. \(V_k = 40eV \)에서 I=1mA일 때 a =0.02이고, Ic=20mA일 때 a=0.2를 얻을 수 있다. Ic를 1mA로부터 10mA까지 증가시켰을 때와 비교하면, 10mA로부터 20mA까지 증가 시켰을 때는 Ic의 증가율이 달라진다. 이것은 주입전하 에너지가 base-collector의 장벽(barrier) \(\phi \) 이상이 되면 급격하게 투과율이 증가 하는 것에 대응된다. (그림 9)에 tunnel 주입

(그림 9) (a) tunnel 주입형 초전도 트랜지스터의 “ON-state” energy band diagram과 투과전자의 profile
(b) 삼단자자의 병적 특성
<table>
<thead>
<tr>
<th>고온초전도 전자소자</th>
<th>유형 및 전하운반자</th>
<th>소자구자</th>
<th>연구기업</th>
</tr>
</thead>
<tbody>
<tr>
<td>근접효과형 트랜지스터</td>
<td>(a) Field effect형 : 전자쌍</td>
<td>source-gate-drain</td>
<td>Hitachi</td>
</tr>
<tr>
<td>(초-반-초)</td>
<td>(日立)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Charge injection형</td>
<td>source-gate-drain</td>
<td>Toshiba</td>
</tr>
<tr>
<td>(electron-pair)</td>
<td>(초-반-초)</td>
<td>(東芝)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(*I : insulator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>초진도 base 트랜지스터</td>
<td>(c) 10W energy injection형</td>
<td>emitter-base-collector</td>
<td>Sanyo</td>
</tr>
<tr>
<td>(quasi-particle)</td>
<td>(초-절-초-반)</td>
<td>(三洋電気)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) High energy injection형</td>
<td>emitter-base-collector</td>
<td>Oki-Electric</td>
</tr>
<tr>
<td>(quasi-particle)</td>
<td>(반-효-반)</td>
<td>(中電機(株))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>신기능</td>
<td>(e) Single-electron tunneling</td>
<td></td>
<td>NEC</td>
</tr>
<tr>
<td>transistor(단전자 관통트랜지스터)</td>
<td></td>
<td>(일본電気)</td>
<td></td>
</tr>
<tr>
<td>: *e or 2e(*e : 단전자)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) Localized-state tunneling transistor</td>
<td>source-gate-drain</td>
<td>Fujitsu</td>
</tr>
<tr>
<td>(quasi-particle)</td>
<td></td>
<td>(富士通)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 초 : 초전도체, 반 : 반도체, 절 : 절연체

(그림 10) 차세대 프로젝트로 개발중인 고온초전도 삼단자소자

162
형 소자의 "ON-state" energy band diagram과 Sanyo 전기의 금속층 등이 얻은 소자특성이 나타내어졌다.21

한편 α가 0.2라고 하는 것은 base층의 두께가 1000Å 정도임에도 불구하고 주입에너지의 절반이 collector 계면까지 20%가량의 전자가 도달할 수 있음을 보여주는 수치이다. 이것은 Bi(Ba, Rb)O₃, 박막에 주입된 전자의 수송효율(transport yield)이 100Å 당 0.9정도 이상인 것을 보여주고 있으며 흥미로운 결과이다. 더구나 Nb를 base 전극으로 이용한 Tamura 등22의 실험에서는 $\alpha = 1.6 \times 10^{-4}$가 얻어졌음에 지나지 않는다는 사실을 고려하면 Bi(Ba, Rb)O₃와 SrTiO₃(Nb doping)로 구성된 base–collector 계면은 정합성(matching)이 좋기 때문에, 높은 온도의 양자역학적 반사가 작다는 것으로 결론지을 수 있다.

V. 결론

고온초전도체가 발견되고 나서 5년이 경과되었고, 그동안 많은 초전도체료가 발견되었으며, 산화물 특유의 박막제조기술 등, 초전도 device 제작에 필요한 process기술이 속속 개발되고 있다. 그리고 고온초전도체는 21세기 산업을 향미지고 나갈 잠재력(potential)이 있음을 확신시키고 있다.

발견당시, 고온초전도체를 이용한 "초전도 트랜지스터"는 한참 꿈이야기로 들렸지만, 1992년에 점이 들면서 고온초전도 잠수자소자가 실현될 수 있는 가능성을 다분히 보여주고 있어, 이에 대한 연구도 상당한 진전을 보고 있다. 끝으로, 일본의 통산성(通産省)이 발표한 차세대 프로젝트로서 진행시키고 있는 고온초전도 삼단자소자 개발계획과 관련된 일본의 우수한 반도체회사의 연구목표를 (그림 10)에 실었다23.

참 고 문 현

22. H. Suzuki et al, ISS '91 to be published