*
re
-
Uk
Okt
L 4

Organization of Parallelizing Compilers
(R E3} Asldele] +=)

B.-M. Chang* J. K. Lee** D. Chi*™*
(FEz, o|xMg, XISsH)

Wide varety of the architectural complexity of parallel computers often makes it difficult to develop efficient programs for them.
One of approaches to improve this difficulty is to program in famihar sequential languages such as Fortran or C and to parallelize
sequential programs into equivalent parallel programs automatically. This paper presents an organization of parallelizing compiler

which transforms sequential programs mnto equivalent parallel programs. The parallelizer consists mainly of syntax analysis, control
and data flow analysis, dependence analysis, program transformations, and parallel code generation. In particular, the program

restructuring 1n thus parallelizer maximizes loop parallehism

I. Introduction

Developing efficient programs for many
parallel computers is difficult because of the
architectural complexity of those machines.
Furthermore, the wide variety of machine
organizations often makes it more difficult to
port an existing program than to reprogram

completely.

* wgxed 74 post-doc 974
*egdsd Ty AddTd
s yaAddTd 4%

One of approaches to improve this situation is
to program in familiar sequential languages such
as Fortran or C and to parallelize sequential
programs into equivalent parallel programs
automatically {1-3]. This approach frees the
programmer from concerns about the specific
characteristics of the target parallel machine.
There are the following reasons why the
parallelization of sequential programs is
important :

« there are many sequential programs that

would be convenient to be executed on

parallel computers.

HXSASHEA HIA H45 1995 14

Fortran 77/90

Y

Parallelizer J

Y

HPF

Y

HPF Compiler J

v

Object Code

Fig. 1. Fortran parallelizer.

» powerful parallelizers should facilitate
programming by allowing to develop
programs in a familiar sequential program-
ming language such as Fortran or C.

« much of experience about parallelization
should be applicable to the other translation
problems.

This paper presents an organization of
parallelizing translator, which transforms
sequential programs into equivalent parallel
programs. As an example, we will develop a
parallelizer which transforms programs in
Fortran 77 or 90 into equivalent parallel
programs in High Performance Fortran (HPF)
[4]. HPF is a newly designed language for
parallel processors, which is a superset of
Fortran 90. It provides directives for data layout,
two parallel loops FORALL and INDEPENDENT

DO loops, and additional intrinsics for data

10

parallel operations. The transformed parallel
programs will be compiled into object code by
parallel backend compiler. This relationship is
shown in Fig. 1. Since this paper aims to
introduce an overall organization and some
theoretical foundations of the parallelizer, they
are not applied only to Fortran parallelizer, but
also to parallelizer for other procedural
languages. So, Fortran syntax is not necessarily
used in the following.

We also give an overview of techniques for
parallelizers which transform sequential
programs into equivalent parallel programs. The
parallelizer consists mainly of syntax analysis,
control and dataflow analysis, dependence
analysis, program transformations, and parallel
code generation. Parallelizers for high-
performance parallel processors maximize
parallelism and memory locality, mostly by
tracking the properties of arrays using loop
dependence analysis, while most optimizations
for uniprocessors reduce the number of
instructions executed by the program. In
particular, the program restructuring in this
compiler maximizes loop parallelism.

The organization of the rest of this paper is as
follows. The next section gives a brief overview
of organization of parallelizing compilers.
Section III presents a description on analysis part
for dataflow analysis, dependence analysis, etc.

Section IV presents program restructuring

Organization of Parallelizing Compilers / =2, o|xiE, XS5l

techniques to improve parallelism. Section V . source irogram

describes a unified restructuring framework

which maximizes loop parallelism. Section VI | Lexical Analysis l

1 1
[} 1
[} i
Front-end | H
concludes the paper. ! tokens |
: r |
. . . E | Parsing —| !
IL. Organization of Parallelizers L .
symbol table & AST
. - | bkt ‘ ———————— 0
We have presented a diagram of the various ” Control flow Analysis IE
parts of a parallelizer in Fig. 2. We have tried to Analysis ; Y CFG i
present one reasonable organization. ' Data flow and E
I
. i
The first two phases, lexical analysis and E Dependence Analysis |
| Iy ———— P ————— '
parsing, constitute the front-end of the compiler. PDG
. Dependence Vectors, Use-Def Links
The front-end converts the original source S L S .
. . . Transformation 1 Transformation ‘ !
programs into more convenient internal data ' | H
e ok, Rk R p—— 4
structures and checks whether the static semantic i PDG
r— - === ======-=" T
constraints of the language have been properly Code | | Parallel program E
o Generaon eneration !
satisfied. The parser generally produces an [— “f ___________ '

abstract syntax tree(AST), a symbol table, and
parallel program

information needed for basic interprocedural

analysis. Fig. 2. Organization of a parallelizer.

The next stage of parallelizers is analysis,

. . Procedure test(a,b)

which consists of several phases of analyses. The integer c.d

first step is to produce control-flow graph (CFG) b
c=2a

by control flow analysis. The CFG converts the d=c*a
if (c>d) then

different kinds of control transfer constructs in c=c+d
elsed=a

the program into a single form that is easier for while (a<b)

. . =a*2

the compiler to manipulate. After control flow r:mn?

has been dealt with, daraflow analysis and

dependence analysis are to be done in order to

examine how data is being used in the program.

There are a variety of representations for Fig. 3. Control flow graph.

1

NN

ol
Ol
glid

A HoAH HM4E 19954 19

capturing flow information such as program
dependence graphs [5], static single-assignment
Jorm [6] and dependence vectors .

With this information, compilers can often
automatically detect parallelism in loops, or report the
user specific reasons why a particular loop can
not be executed in parallel. Additional
performance improvement in parallelism and
memory locality can be achieved by a series of
restructuring transformations, such as loop
interchange, reversal, skewing, tiling (or
blocking), etc.

Once the program has been fully transformed,
the last stage of compilation is to convert it into
an equivalent parallel program, which is in a
parallel language like HPF, or in a sequential
language with runtime library for parallel

processing.

III. Analysis
1. Control Flow Analysis

There are a wide variety of representations
that have been developed to simplify analysis.
The most basic is the control flow graph (CFG)
[7]. The CFG is a directed graph containing one
node for each basic block in the program, plus
two distinguished nodes called Entry and Exit.
Each node has an edge to every node to which it

can transfer control. The Entry node has an edge

12

to every basic block that represents an entry
point of the code; there is an edge to Exit from
any basic block that can cause an exit. Figure 3
shows a procedure and its control flow graph.
The control flow analysis builds the control
flow graph of the program and determines the
interval regions of this graph. The control flow
graph is the basis for dataflow analysis and for
the construction of control dependence graph.
An interval is a single-entry, strongly connected
region in which every cycle includes the entry
node. The interval partitioned control flow graph
has been used as a space-and time-efficient basis
for dataflow analysis and program transforma-

tions.

2. Dataflow Analysis

The parallelizer performs interprocedural
analyses before intraprocedural dataflow
analysis. Interprocedural dataflow analyses are
done based on the call graph , which consists of
nodes representing routines and edges
representing calls, with one edge for each call
site. Parallelizer generally performs the
following three interprocedural analyses :

- Interprocedural alias analysis computes the
set of potentially aliased variable pairs for
each procedure in the program.

- Interprocedural constant propagation

determines when a formal parameter will

Organization of Parallelizing Compilers / 2=z, o|xiZE, X|Ss|

always have the same constant value upon
entrance to its procedure. This information
sharpens the intraprocedural constant
propagation analysis. In parallelizing
compilers, the result of constant propagation
will improve the sharpness of dependence
analyses to come.

Interprocedural side effects analysis
determines modified variables and used
variables by each call.

Within procedure or functions, dataflow
analysis, constant propagation, and linear
induction variable detection are generally
performed in parallelizers. Dataflow analysis [8]
was one of the first strategies for analyzing
program behavior. It is usually performed on a
control flow graph; it attempts to track the flow
of data through the program’s variables and to
characterize the values of variables at various
points of execution. The primary purpose of
dataflow analysis is the consideration of def-use
and use-def chains [7]. Def-use chaining
determines, for every definition of variables, the
list of all possible uses of that definition. Use-def
chaining is defined in the same manner. The
reaching definitions and live variable global
dataflow problems are solved by the interval
aﬂalysis dataflow technique [9]. In order to
increase precision of the def-use and def-def
chains, the interprocedural alias analysis is done

in the program before the dataflow analysis is

13

started. Def-use and use-def chains will be a
basis of dependence analysis to be described in
the next section.

Intraprocedural constant propagation is a well-
known optimization which determines the
definitions which are integer constants to
improve the subsequent phases of linear
induction variable detection, data dependence
analysis, and potential parallel process
identification. In order to accomplish this goal,
our constant propagator uses interprocedurally
determined constants. The linear induction
variable detection finds mutually defined linear
induction variables and also determines the

scope of such variables for dependence analysis.

3. Dependence Analysis

Among the various forms of analysis,
parallelizing compilers heavily rely on
dependence analysis [10, 11]. A dependence is a
relationship between two computations that
places constraints on their execution order.
Dependence analysis identifies these constraints,
which are then used to determine whether a
particular transformation can be applied without
changing the semantics of the computation.
There are two kinds of dependences: control

dependence and data dependence .

Definition 1 (Data dependence)

HAEAUSEHEA H9AH M= 19954 1

Given two statements S and T, such that §
precedes T in the sequence,

- T is flow dependent on S, denoted by S&T, iff
there exists a simple variable v such that §
assigns a value to v and T fetches the value
of v(def-use ordering).

- T is anti dependent on S, denoted by S&T, iff
there exists a simple variable v such that T
assigns a value to v and S fetches the value of
v(use-def ordering).

- T is out dependent on S, denoted by Sd°T, iff
there exists a simple variable v such that both
T and S assign a value to v.

- T is data dependent on S, denoted by SOT, iff
SOT, S&T, or S&T.

The control dependence relation represents the
part of the control structure of the source
program that is important to determine which
transformations are valid. The definition that is
most frequently used today is that of Ferrante et
al. [5]. They define control dependence relation

in terms of control-flow graphs (CFG).

Definition 2 (Control dependence)

In control-flow graphs, a node T of a control-
flow graph is said to be control dependent on a
node S if

1) there is a path from S to T whose internal

nodes are all postdominated by T; and

2) T does not postdominate S.

Intuitively, the control dependence means that

14

the outcome of S determines whether or not T
executes.

For data-dependence computation in actual
programs, the most common situation occurs
when we are comparing two variables in a single
loop and those variables are elements of a one-
dimensional array, with subscripts linear in the
loop index variable, as in the following model:

dol=pg

S: X(a*1+a)=..

T .= XB=*I+b,)..

end do

Here, X is a one-dimensional array; p, g, a, a, b,

*and b, are integer constants known at compile

time; and both a and b are nonzero. We want to
find out if the output variable of statement S and
the input variable of statement T cause a data
dependence between T and S.

The instance of the variable X(al + a,) for an
index value I = i is X(ai = a,), and the instance of
the variable X(bI + b,) for an index value I = is
X(bj + b,). These two instances will represent the
same memory location iff
1

Since i and j are values of the index variable 7,

ai-bj=bo-ao.

they must be integers and lie in the range :
pP<i<gq
P<jsgq 2
Suppose (i,j) is an integer solution to (1) that
also satisfies (2). If i <, then the instance S(i) of

S is executed before the instance T{(j) of T in the

Organization of Parallelizing Compilers / &2 0|xfF, x|Ssl

sequential execution of the program. Hence, S(i)
first puts a value in the memory location defined
by both X(ai + a,) and X(bj + b,), and then T(j)
uses that value. This makes the instance 7(j)
flow dependent on the instance S(i), and the
statement T flow dependent on the statement S.
Similarly, if i > j, then S(i) is antidependent on
T(j) and S is antidependent on 7.

Now we consider nested loops. Figure 4
shows a generalized perfect nest of d loops. The
body of the loop nest reads and writes elements
of the m-dimensional array a. The functions f,
and g, map the current values of the loop
iteration variables to an integer which indexes
the i* dimension of a. The generalized loop can
give rise to any type of data dependence.

An iteration can be uniquely named by a

where [, <1, <

vector of d elements ? = (i} oy 1),
u,. The outermost loop corresponds to the
leftmost index.

We will describe how to find loop-carried
dependence between the two references to a, and
how to represent those dependences. Clearly, a
reference in iteration J can only depend upon
another reference in iteration 7 that was executed
before it, not after it. We denote 7 < .7 if the
iteration I is executed before J in sequential
execution. A reference in some iteration J
depends upon a reference in iteration T when the

values of the subscripts are the same in different

iteration 7 and .7 If no such 7and .7 exist, the two

15

references are independent across all iterations
of the loop.
dO i] = lI’ U,

dO iz = lz, Uy

doi,=1l,u,
a[f](ib seay in)’ ey, fm(jl. e, in] =
we=alg(iy oy 1)y coes 8l oy)]
end do
end do

Fig. 4. General loop nest.

Example 1 Each iteration of the inner loop
writes the element ali, j]. There is a dependence
if any other iteration reads or writes the same
element. Consider iterations 7 = (1,3) and J=
(2,2). There is a flow dependence from iteration
T to iteration 7 since iteration 7 writes the value
a[1,3] and this is read in the iteration J.

doi=2,n

doj=1,n-1
alij] = ali,j] + ali-1, j+1]
end do
end do

When T & .7, the dependence distance is
defined as J - I = Gi-ip - s Ju - i,). In the above
example, the dependence distance is J-1= (1,
-1) When a dependence distance is used to

describe the dependences for all iterations, it is

HRsLEE

o
A

A H9H M4z 19954 1€

called a distance vector [12, 13]. A legal distance
vector must be lexicographically positive,
meaning that the first nonzero element of the
distance vector must be positive.

In some cases it is impossible to determine the
exact dependence distance at compile-time. A
direction vector[10] is commonly used to

describe such dependences. For a dependence 15

7, the direction vector d = d, ..., d,) where
<ifl,<J,
d, = =ifl,=J,
>ifl,>J,

It is well known that a linear diophantine
equation like (1) has a solution iff the gcd of the
coefficients on the left-hand side divides the
right-hand side. This fact can sometimes be used
to settle a data-dependence question : it is called
gcd test. There is a generalized gcd test using
this property that works for a system of linear
diophantine equation [11].

The A-test [14] is an approximate test that tries
to decide if there is a real solution to the whole
system of data dependence equations satisfying
the constraints. It assumes that no subscript
tested can be formed by a linear combination of
other subscripts.

The I-test [15] combines the approximate
method and the ged test. It isolates the case in
which the approximate method is exact, and

therefore can decide if there is an integer

16

solution in that case. It is applicable when the
array is one dimensional, and the coefficients of
the data-dependence equation are small in a
sense.

The Q-test [16] uses an extension of the
Fourier-Motzkin method to integer program-
ming. Although its worst-case time complexity
is exponential, it is claimed to be a fast and
practical method for performing data dependence

analysis.
IV. Program Transformation

Since parallelizing compilers were introduced,
a lot of transformation techniques have been
proposed to expose parallelism and improve
memory locality [17]. In this section we describe
one framework that is being actively investigated
based on unimodular matrix theory[18]. It is
applicable to any loop nest whose dependences
can be described with a distance vector; a subset
of the loops which requires a direction vector
can also be handled. It is well known that loop
transformations such as interchange, reversal,
and skewing are useful in parallelization. These
loop transformations can be modeled as
elementary matrix transforma- tions;
combinations of these transformations can be
simply represented as products of the elementary

transformation matrices. The optimization

problem is thus to find the unimodular

Organization of Parallelizing Compilers / #=2, o[, X153

transformation that maximizes an objective
function given a set of constraints.

Let us consider a loop interchange
transformation to illustrate the unimodular trans-
formation model. A loop interchange transfor-
mation maps iteration(i, j) to iteration(j,). In
matrix notation, this is written as

01 i j
[10] [,- :l) [i]

The elementary permutation matrix thus
performs the loop interchange transformation on
the iteration space. A unimodular matrix has
three important properties.

* it is square.

« it has all integer components.

« the absolute value of its determinant is one.
Because of these properties, the product of two
unimodular matrices is unimodular, and the
inverse of a unimodular matrix is unimodular.

Since a unimodular matrix performs a linear
transformation on the iteration space, T;z - T;, =
T(Ez - 1_;1). Therefore, if d is a distance vector in
the original iteration space, then Td is a distance
vector in the transformed iteration space.

There are three elementary transformations :

Permutation : A permutation ¢ on a loop nest

s Po)-

This transformation can be expressed in matrix

transforms iteration (py, ..., ps) to (Pa, ...

form as I, the n X n identity matrix / with rows
permuted by . The loop interchange is an n=2

example of the general permutation transforma-

17

doi=l, u,

o ows i
doj=s*i+l,s*i+uy

end do
end do

(a) Original loop

doj=s*L+[, s*u+u

doi =max(l, (- u, +s- 1/s), min(u, -1, + - 1)s)

enddo
enddo

(b) Interchanged loop

Fig. 5 Loop Interchange: a kind of permutation.

tion. Loop interchanges exchange the position of
two loops in a loop nest, generally moving one
of the outer loops to the innermost position. It is
one of the most powerful transformations and
can improve performance in many ways. Among
many advantages of loop interchange, it may be
performed to improve parallelization by moving
the independent loop with the largest range into
the innermost position. General rule for loop
interchange is in Fig. 5.

Reversal : Reversal of the i-th loop is
represented by the identity matrix, but with the i
-th diagonal element equal to -1 rather than 1.
For example, the matrix representing loop
reversal of the outermost loop of a two-deep

loop nest is

HAESMSHEAS X9 M4E 1995d 1Y

doi=2,n-1
doj=2,m-1
ali, j1=(ali- 1, j1+ali, j - 1 1+a[i+1, /]
+ali, j+ 1])/4
end do
end do
{2) original code : dependences {(1,0), (0,1)}
doi=2,n-1
doj=i+2,i+m-1
alij-11=(ali-1,j-1] + ali, j-i-1] + ali+1, j-1]
+afi, j-i+17)/4
end do
end do
(b) skewed code : dependences {(1,1), (0,1)}

Fig. 6. Skewing.

Skewing : Skewing loop I, by an integer
factor f with respect to loop /, maps iteration

(B,5 s Prty Py Pisty iy Pyts Pry Pysts +ves Pa)

to -

D1y ooes Prts Pis Pisty +oes Prits Dy + JDis Dytts +oes Pa)

The transformation matrix T that produces
skewing is the identity matrix with the element
t, , equal to f rather than zero. Since i<j, T must
be lower triangular. In the transformed code, the
same quantity fp, is subtracted from every use of
the iteration variable of the loop /. Note that the
computation in the transformed code is still done
in the same order as in the original code.

For example, the transformation from Fig.1

18

(a) to Fig. (b) is a skew of the inner loop with
respect to the outer loop by a factor of one, and
then subtracts the same quantity from every use
of the inner iteration variable inside the loop.
The transformed code is equivalent to the
original, but the effect on the iteration is to align
the diagonal wavefronts of the original loop nest
so that for a given value of j, all iterations in i
can be executed in parallel.

All these elementary transformation matrices
are unimodular matrices.

When transforming loops, the following
principle must be satisfied :

Principle 1 When the transformed code is
executed in lexicographic order, all data
dependences are satisfied if the transformed
distance vectors are lexicographically positive.
An unimodular transformation for a loop nest is
legal iff all the transformed distance vectors are
lexicographically positive.

For example, loop interchange of the loop nest
in Example 1 is illegal since the transformed
distance vector (-1,1) is illegal. This means that
the original dependencies are not satisfied in the

transformed loop.
V. Parallelization Techniques
A major goal of parallelizing compilers is to

discover and exploit parallelism in loops. This

section describes a new model of transfor-

Organization of Parallelizing Compilers / 22, o[, XSl

mations to maximize loop parallelism [18]. The
model is important in the sense that it enables
the choice of an optimal transformation without
an exhaustive search. The derivation of the
optimal compound transformation consists of
two steps. The first step puts the loops into a
canonical form called fully permutable loop, and
the second step tails it to specific architecture.

A loop nest is said to be fully permutable if all
the components of the distance vectors are
nonnegative. This implies that any loop
permutation would render the transformed
dependences lexicographically positive and is
thus legal. Full permutability is an important
property for parallelization and locality.

We will show that n-deep loops have at least
n-1 degrees of parallelism, exploitable at both
fine and coarse granularity. The algorithm
consists of two steps :

« transformation of the original loop nest into

a fully permutable loop nest.

« transformation of the fully permutable loop
nest to exploit coarse and/or fine-grain
parallelism according to the target archi-
tecture.

Loops with distance vectors have a special
property that they can always be transformed
into a fully permutable lodp nest via skewing.

Theorem 1 [18] Consider a loop nest with
lexicographically positive distance vectors. The

loops in the loop nest can be made fully

19

perniutable by skewing.

Iterations of a loop can be executed in parallel
iff there are no dependences carried by that loop.
To maximize the degree of parallelism is to
transform the loop nest to maximize the number
of DOALL loops.

Theorem 2 Let (I, ..., I) be a loop nest with
lexicographically positive dependences deb. 1
is parallelizable iff for all dED, (d,, ..., d,;) > 0
or d=0.

To determine whether a loop can be executed
in parallel, its loop-carried dependences must be
examined. The obvious case is when there are no
dependences carried across iterations by the
loop. We consider several loops which is

parallelizable. Figure 7 (a) shows that the outer

doi=1,n
doj=2,n
afi,jl=ali,j-1]+c¢
end do
end do
(a) Outer loop is parallelizable
doi=1,n
doj=2,n
ali, jl=ali- 1, jl+ali-1,j+ 1]
end do
end do

(b) Inner loop is parallelizable

Fig. 7. Dependence conditions for

parallelizing loops.

HASAUSSEY F9A H4=: 19954 18

loop is parallelizable because the distance vector
for the loop is (0,1). In Figure 7 (b), the distance
vectors are (1,0),(1,-1), so the inner loop is
parallelizable by Theorem V.

In general, the loops in the canonical format
can be trivially transformed to give the
maximum degree of fine grain parallelism. It is
shown in [18] that a nest of n fully permutable
loops can be transformed to code containing at
least n-1 degrees of parallelism.

Theorem 3 [18] Applying the wavefront
transformation to a fully permutable loop nest

maximizes the degree of parallelism with the

nest.
11 ..11
10 .00
01..00
00 ..10

For an n-dimensional loop nest, the maximal
degree of parallelism is n-1 if there are any
dependencies carried within the loop nest, n
otherwise.

For example, Fig.6 (a) itself is fully
permutable. Applying the wavefront transfor-
mation to the original loop make the inner loop
in the transformed loop parallelizable. As a
matter of fact, this wavefront transformation is
equivalent to applying the skewing in Fig.6 (b)
and interchange in sequence. The transformed

loop is as follows :

20

doj=4,m+n-2
doi=max(2, j - m+1), min(n - 1,j-2)
ali, j-11=(afi- 1,j- 1] +afi,j-i- 1] +ali +1,j
-1]+4dli,j-i+1]y4
end do
end do

VI. Conclusion

We have given an overall organization and
theoretical foundations of parallelizer. Currently,
Fortran parallelizer is being developed as a part
of the development of the highly parallel
computer. It would be the first parallelizer which
transforms Fortran programs into HPF programs.
After it has been implemented, performance

statistics on it will be presented.

References

[11 R Cytron,J Ferrante, and V. Sarkar, "Experiences using control
dependence," in PTRAN, "Languages and Compulers for Parallel
Computing,” Edited by D. Gelernter, A. Nicolau, and D. Padua,
1990, MA: MIT Press, pp 186-211.

[2] G.-R.Luecke,] Coyle, W. Haque, J. Hoekstra, H. Jespersen, and R.

Schimudt, A comparative study of KAP and VAST: two automatic

preprocessors with Fortran 8x output, Supercomputer 29, vol. V,

no. 6, pp 15-25, 1988.

[3] CD. Polychronopoulos, MB Firkar, M R. Hagnghat, C. L. Lee,

B.P. Leung, and D.A. Schouten, "The structure of Parafrase-2. an

advanced parallelizing compiler for C and Fortran," Languages

Organization of Parallelizing Compilers / &%=, olxf&d, X3l

and Compilers for Parallel Compuning, Edited by D. Gelernter, A.
Nicolau, and D Padua, 1990, MA: MIT Press, pp. 423453 vol.
81, no. 2, Feb. 1993, pp 288-304
[4 DB Lovem'an, "High Performance Fortran," IEEE Parallel and
Dustributed Technology, Feb 1993, pp 2542.
[5] I. Ferrante, K. J. Ottensten, and J. D Warren, "The program
dependence graph and its use in optimization," ACM Transactions
on Programming Languages and Systems, vol 9, no 3, July 1987,
pp. 310-349.
[6] R Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F K
Zadeck, "Efficiently computing static smgle assignment form and
the control dependence graph,” ACM Transactions on
Programming Languages and Systems, vol 13, no. 4, Oct. 1991,
pp. 451-490
[7]1 FE.Allen and J.Cocke, "A program dataflow analysis procedure,”
Communications of ACM, vol 19, no. 3, Mar. 1976, pp. 137-146
[8] S. S. Muchnick and N. Jones, Program Flow Analysis.
Englewood Chiffs, New Jersey. Prentice-Hall, 1981.
[9] J.T. Schwartz and M Sharir, A destgn for optimzations of the bit
vectoring class. Computer Science Report no. 17, New York
University, Sept. 1979.
[10] M. J. Wolfe, "Optimizing Supercompilers for Supercomputers,”
PhD thesis, University of Ilnois at Urbana-Champaign, 1982.
[11] U. Banerjee, "An mtroduction to a formal theory of dependence

analysis," J. Supercomputing, vol 2,n0 2, Oct. 1988, pp 133-149.

21

[12] D J Kuck, The structure of Computers and Computations, vol. 1,
New York John Wiley and Sons, 1978 .

[13] Y Muraoka, Parallelism Exposure and Explostation mn Programs,
Ph D. thesis, University of Illinois at Urbana-Champaign,
Techmcal Report 71-424, 1971.

[14] J L1, P Yew, and C Zhu, "An efficient data dependence analysis
for parallelizing compulers,” and M. Chen, "Compiling communi-
cation-effictent programs for massively parallel machines," IEEE
Trans on Parallel and Distributed Systems, vol. 1, no. 1, Jan. 1990,
pp 16-34

[15] X. Kong, D Klappholz, and K Psarns, "The test. An improved
dependence test for automatic parallelization and vectonization,”
IEEE Trans on Parallel and Distributed Systems, vol. 2, no 3,
July 1991, pp 342-349

[16] W. Pugh, "The Omega test: A fast and practical integer
programming algorithm for dependence analysis,” Proc. of
Supercomputing '91, Nov. 1991.

[171 D F Bacon, S L Graham, and O J. Sharp, "Compiler
Transformations for High-Performance Computing,”Technical
Report UCB/CSD-93-781, Berkeley. University of California,
1993.

[18] M. E. Wolf and M S Lam, "A Loop Transformation Theory and
an Algonithm to Maximuze Parallelism,” IEEE Transactions on
Parallel and Distributed Systems, vol 2, no. 4, Oct. 1991, pp 452-

47

